Northern Virginia LID Supplement

Developing A Water Quantity Sizing Approach for LID Design

NVRC was charged with developing a LID Supplement that met the needs of the Northern Virginia jurisdictions

- Formulate a unified Northern Virginia regional approach for LID site development design
- Streamline and simplify the complexity of the comprehensive LID design philosophy
- Allows the site developer to design a LID site and the reviewer to replicate and verify that it has been designed appropriately

Northern Virginia LID Supplement content

- LID philosophy
- Applicable stormwater regulations
- Proposed LID sizing approach
- LID practices
- Expanding the use of LID
- Checklist
 - Site planning
 - Design
 - Construction
 - Operation and maintenance

Northern Virginia LID Supplement BMPs

- 1. Pervious pavements
- 2. Reforestation
- 3. Vegetated roofs
- 4. Bioretention cells
- 5. Vegetated swales
- 6. Vegetative box filters
- 7. Filtration devices
- 8. Pocket wetlands
- 9. Non-structural sand filters
- 10. Level spreaders
- 11. Dry wells
- 12. Rainwater catchment systems

The LID Supplement is in Final Draft Review

- The LID Supplement provides tools that together guide the site design process
- Missing from the Supplement is a water quantity sizing approach
- The LID Workgroup wants conformance with State requirements before finalizing a sizing approach

Local, State, and Federal regulations aim to protect downstream bodies of water.

The Sizing and Selection Approach for LID Design Should Replicate Predevelopment Conditions As Feasible

- Infiltration volume
- Peak discharge control
- Water quality volume
- Adequate outfall analysis
- Credits

Precipitation Frequency of Occurrence & Cumulative Volume Data source: Reagan-National Airport (May 1948 through January 2006)

Precipitation & Cumulative Volume Captured For Water Quantity Sized BMPs

Data source: Reagan-National Airport (May 1948 through January 2006)

Precipitation & Cumulative Volume Captured For Water Quantity Sized BMPs Data source: Reagan-National Airport (May 1948 through January 2006)

Precipitation	Cumulative Long- Term Volume of Precipitation	Volume Captured by Water Quantity Sized BMP
1-inch	60%	85%
1.32-inch (1/2 of 1-year)	72%	91%
2.6-inch (1-year)	93%	98%
3.2-inch (2-year)	96%	99%

Do design storms compensate for landuse change?

Protect stream geomorphology

- 1.5-year storm represents bank full conditions
- Development shifts hydroperiods
- Bankfull event vs. continuum
- Typical measures in use
 - 1-year storm
 - 2-year storm
- Results of peak discharge control
 - Regional
 - Microscale

Manage downstream flooding

- 10-year storm to protect manmade structures
- 100-year storm to identify/protect floodplain

Design storms do not address all impacts

Reduced infiltration

- Reduction of volume infiltrated
- Site of infiltration altered
- Perennial stream become ephemeral streams

Aquatic habitat degradation

- Peak discharge controls extend increased velocity
- Pollutant/sediment loads degrade habitat

Pollution

- Sediments
- Nutrients
- Toxics
- Other

Volume control approach

- Applies to conventional and LID BMPs
- Does not necessarily promote LID
- Can manage the following wet weather impacts:
 - Physical stream protection
 - Key is selecting target design storm(s)
 - Can meet VA adequate outfall requirements
 - Infiltration
 - Can preserve RPAs
 - Reduces pollutant loads
 - No VA requirements
 - Water quality
 - Can lower pollutant loads
 - May not explicitly meet Chesapeake Bay Act requirements

What will promote LID?

- Design volume control, design storms, credit protection and other applications so the following claims can be reasonably defined:
 - Full application of LID practices meets adequate outfall requirements
 - Volume control at microscale applications meets LID Design Manual guidance
 - Describe IMPs that relate WQ volume and LID BMPs to meet
 - NPDES stormwater pollutant requirements
 - Chesapeake Bay Act pollutant requirements

MS-19 Adequate Outfall compliance

 MS-19 compliance recognizes the capture of the 1-year 24-hour stormwater runoff volume and its release over a 24-hour period as meeting the stream protection requirements

The caveats are:

- Peak flow check
- Adequate outfall check

LID Sizing Methodology 1

- Capture 90% of stormwater runoff volume (~half of the 1-year storm)
- Infiltrate to the extent practicable to meet predevelopment infiltration/retention volumes
- Detain remaining flows for an extended period such that the 1-year predevelopment peak flow is not exceeded
- Work with state to find if this will be acceptable to meet MS-19 for stream protection without having to conduct adequate outfall analysis

LID Sizing Approach 2

- Same as Approach 1 except determine additional criteria needed to meet the MS-19 requirement for the 10-year peak flow control
- Determine the additional volume and extended detention needed
- These volumes/detention times may be near to the stream protection requirements

Next Steps

- Work with Virginia DCR
- Evaluate a broad range of scenarios
- Identify variability in runoff capture volumes and duration of extended detention to achieve 2-year and 10-year MS-19 adequate outfall control
- LID Workgroup and Steering Committee select an LID Sizing Approach

Examples

LID Designs Capture a 1-year Storm Volume

Reker Meadows

Site Characteristics					
Development	Pre	Post			
Land Cover	Woods Good				
Impervious (%)	0%	36%			
Connected (%)	0%	50%			
Disconnected (%)	0%	50%			
Soil Type	60% B, 40% C				
Curve Number	61	78			

Note: Site Characteristics have been altered from original example.

Volume Methodology

Pre Development Basin Characteristics Land Cover / Soil Type / Basin Table

 Basin
 Land Cover
 Soil
 Area (ac)
 CN

 1a
 Woods (good)
 B
 22.8
 55

 1b
 Woods (good)
 C
 15.2
 70

Post Development Basin Characteristics Land Cover / Soil Type / Basin Table

Basin Land Cover Area (ac) CN В 14.5 Woods (good) 55 1a Woods (good) 9.7 1b 70 1c Impervious В 8.3 98 1d Impervious C 5.5 98

Area Disconnected Impervious = 6.9 ac

Runoff Volume Formulas

Runoff (in) = (P-0.2S)² / (P+0.8S) P = 1 year rainfall = 2.6 in S = 1000/CN-10

Runoff (ac-ft) = Q*A/12 Q = Runoff (in) A = Area (ac)

Volume Credit (ac-ft) = Adis*1/4 (in) /12 Adis = Area Disconnected Impervious

Pre Development Runoff Volume by Land Cover / Soil Type / Basin

Basin Runoff (in) Runoff (ac-ft) 1a 0.10 0.19 1b 0.50 0.64

Pre Development Runoff = 0.83 ac-ft

Post Development Runoff Volume by Land Cover / Soil Type / Basin

Runoff (in) Runoff (ac-ft) Basin 0.27 1a 0.14 1b 0.89 1.12 0.20 1.64 1c 1.09 1d 0.20 0.25 0.14

Post Development Runoff = Runoff post – Credit Post Development Runoff = 3.26 – 0.14

Post Development Runoff = 3.12 ac-ft

Infiltration Volume

Infiltration Volume = Runoff post – Runoffpre Infiltration Volume = 3.12 – 0.83 Infiltration Volume = 2.29 ac-ft

Water Quality Volume

Water Quality Vol = Runoff post – Infiltration Vol Water Quality Vol = 3.12 – 2.29 Water Quality Vol = 0.83 ac-ft

Site Characteristics

Pre Development Basin Characteristics Land Cover / Soil Type / Basin Table

Basin Land Cover Soil Area (ac) CN 1a Woods (good) B 22.8 55 1b Woods (good) C 15.2 70

Post Development Basin Characteristics Land Cover / Soil Type / Basin Table

Basin	Land Cover	Soil	Area (ac)	CN
1a	Woods (good)	В	14.5	55
1b	Woods (good)	С	9.7	70
1c	Impervious	В	8.3	98
1d	Impervious	С	5.5	98

Area Disconnected Impervious = 6.9 ac

Runoff Equations

```
Runoff (in) = (P-0.2S)^2 / (P+0.8S)
P = 1 year rainfall = 2.6 in
S = 1000/CN-10
```

Runoff (ac-ft) = Q*A/12 Q = Runoff (in) A = Area (ac)

Volume Credit (ac-ft) = Adis*1/4 (in) /12 Adis = Area Disconnected Impervious

Runoff Volumes

Pre Development Runoff Volume by Land Cover / Soil Type / Basin

Basin Runoff (in) Runoff (ac-ft)

1a 0.10 019 1b 0.50 0.64

Pre Development Runoff = 0.83 ac-ft

Post Development Runoff Volume by Land Cover / Soil Type / Basin

Basin Runoff (in) Runoff (ac-ft) 1a 0.14 0.27 1b 0.89 1.12 0.20 1.64 1c 1d 0.20 1.09 0.25 0.14 Credit

Post Development Runoff = Runoff post – Credit

Post Development Runoff = 3.26 - 0.14

Post Development Runoff = 3.12 ac-ft

Results

Infiltration Volume

Infiltration Volume = Runoff post – Runoff pre

Infiltration Volume = 3.12 - 0.83

Infiltration Volume = 2.29 ac-ft

Water Quality Volume

Water Quality Vol = Runoff post – Infiltration Vol

Water Quality Vol = 3.12 - 2.29

Water Quality Vol = 0.83 ac-ft

Reker Meadows Volumetric Methodology Comparison (ac-ft)

Control Volume	NVRC 2006	PA 2006	MD 2000	PG County 1999
Infiltration	2.29	2.72	0.25	0.74
Water Quality	0.83	2.12	0.83	0.58
Channel Protection	0*	0*	0.57	0.00
Detention	0.83	2.72	1.08	1.31
Retention 2.29		2.72	0.57	0.00

^{*} Provided Tc post <= Tc pre

Example 2 – Falls Church Subdivision

Base Data

Location: Falls Church, Virginia Total Drainage Area = 14.2 ac Soils Types: 10% B, 90% C Zoning: Residential

"The B soil is labeled in the schematic. All other soil is group C.

Development Data

Predevelopment Condition: Good Woods
Post Development Condition:
Impervious = 3.4 ac
Good Woods, B Soil = 9.7 ac
Good Open Space, B Soil = 9.7 ac
Good Open Space, C Soil = 9.4 ac
50% of the Impervious area is disconnected

Predevelopment

Good Woods 14.2 acres

Post Development

- Impervious 3.4 acres
- Good Woods (B) 0.7 acres
- Good Open Space (B) 0.7 acres
- Good Open Space (C) 9.4 acres
- 50% of the impervious area is disconnected

Example 2 – Falls Church Results using NVRC Unified Approach

- Retention Volume = 0.26 acre-ft
 - Difference between Pre and Post 1yr Runoff
 - Volume Credit for disconnected impervious
- Water Quality Volume = 1.16 acre-ft
 - Capture runoff from 1yr event
 - Volume Credit for disconnected impervious
- Total Retention = 0.26 acre-ft
- Total Detention = WQ Volume Retention
 Volume = 0.91 ac-ft

uestions

When did low impact development concepts begin?

